
A2: npm - The Node Package Manager 1

COM644 Full-Stack Web and App Development

Practical A2: npm – The Node Package Manager

Aims
• To introduce the Node Package Manager npm
• To examine the role of package.json
• To demonstrate the addition of new packages through npm
• To demonstrate how package.json can re-build a Node application
• To understand the SemVer Semantic Versioning Scheme for software
• To examine the role of scripts in package.json
• To specify a new script and test it

Contents
A2.1 INTRODUCING NPM .. 2

A2.1.1 CREATING PACKAGE.JSON ... 2
A2.1.2 ADDING ADDITIONAL PACKAGES ... 4
A1.1.3 UNDERSTANDING VERSION NUMBERS .. 6

A2.2 SCRIPTS IN PACKAGE.JSON ... 7

A2: npm - The Node Package Manager 2

A2.1 Introducing npm

npm (Node Package Manager) is a Node tool that allows us to define and manage
dependencies between code modules, libraries and packages. This helps promote the
notion of re-usable code, where members of the Node community develop and share useful
packages that others can include in their projects.

All npm packages contain a file, usually in the project root, called package.json. This file
holds various metadata relevant to the project and is used to give information to npm that
allows it to identify the project as well as handle the project's dependencies. It can also
contain other metadata such as a project description, the version of the project in a
particular distribution, license information, even configuration data - all of which can be
vital to both npm and to the end users of the package. The package.json file is normally
located at the root directory of a Node.js project.

A2.1.1 Creating package.json

`The easiest way to create a package.json file is through the Node command line interface.
Create a new folder called A2 in which to manage all of the files generated in this Practical
and navigate into it.

The new node project is then created by issuing the command

U:\A2> npm init

This launches a series of prompts that invite you to give context information about your
project. We do not need to provide information for all prompts, but the information that
we do provide is written in JSON format to the root node of our project.

Answer the prompts using the information in Figure A2.1 as a guide, and verify that the file
package.json with the following content is created in response. (Note: Press <return> to
accept the default answer for any prompt.)

A2: npm - The Node Package Manager 3

Figure A2.1 Creating package.json

File: A2/package.json

{
 "name": "a2",
 "version": "1.0.0",
 "description": "A demo Node.js application",
 "main": "app.js",
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
 "author": "Adrian Moore",
 "license": "ISC"
}

A2: npm - The Node Package Manager 4

A2.1.2 Adding additional packages

The package.json file created for us is only the starting point of our application. There is a
vast range of Node packages and libraries that we might also want to include and we can
illustrate this by adding a dependency to Express to our application. (Express is a Node.js
library that supports the creation of web server applications – we will investigate it further
in Practicals A3-A6).

For now, we will install Express to our application by the command

U:\A2> npm install express --save

Note: The --save flag on the command instructs Node to install the package AND ALSO
update package.json accordingly. Without --save, the library would be added to the
application, but package.json would not be updated

Add the Express package to your application and check that you get output such as that
shown in Figure A2.2.

Your package.json file should also have now updated to include a new dependencies
section specifying the version of Express to be included.

File: A2/package.json

{
...

 "dependencies": {
 "express": "^4.16.6"
 }
}

A2: npm - The Node Package Manager 5

Figure A2.2 Install Express

The node_modules folder is where external code packages are managed within our
application, but if we are sharing or archiving our code, we do not want this to be part of
the payload that we share or upload. For one thing, we could be sharing out-of-date
versions of the packages, but even more importantly, we should always be obtaining these
from the central npm repository rather from any third party.

Fortunately, the package.json file contains all of the information that is needed to re-create
our full application. We will demonstrate this by deleting the node_modules folder from
our application and then running the command

U:\A2> npm install

to reinstate them.

Prove that npm install rebuilds your application by re-downloading your packages from the
npm repository, giving output such as that shown in Figure A2.3 below.

A2: npm - The Node Package Manager 6

Figure A2.3 Rebuilding the application with npm install

A1.1.3 Understanding version numbers

npm packages are identified using the Semantic Version Specification (SemVer), which
expresses software versions as three values identified as the Major version, the Minor
version and the Patch version. Hence our version of Express (4.16.2) is Major version 4,
Minor version 16 and Patch version 2.

In the SemVer scheme, given a version number in the format Major.Minor.Patch,
developers should increment the

• MAJOR version when a change results in previous versions of the API being
incompatible

• MINOR version when new functionality is added in a backwards compatible manner
(i.e. existing software will still work)

A2: npm - The Node Package Manager 7

• PATCH version when changes are backwards-compatible bug fixes

In other words, a user of a package should always be able to safely upgrade to the latest
Patch or Minor version without fear of incompatibility, but upgrading a Major version (i.e. to
Express 5.x.x) may cause existing functionality to break and should only be done after
thorough testing.

The use of the ^ symbol in the package.json entry

“express” : “^4.14.0”

instructs npm that although it may automatically download the latest Patch and Minor
versions as they become available, it should not automatically upgrade to any new Major
version that may be released.

Note: See http://semver.org for additional information on Semantic Version Specification

A2.2 Scripts in package.json

As well as providing a representation of the various modules required by our application,
package.json provide an opportunity for us to specify a range of ways in which we can
interact with it.

The “scripts” section in package.json contains a range of command specifications that we
can use to launch our application. When we created package.json by npm init, we had the
opportunity to specify a test script to be used. Later in the course we will see how this
could be used, but as we declined to provide a value, npm generated a default “no test
script” entry which can be seen from the code segment below.

File: A2/package.json

{
 ...
 "scripts": {
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...
}

A2: npm - The Node Package Manager 8

In order to run this script, we simply identify it as a parameter to the npm instruction at the
command line by issuing

U:\A2> npm test

This causes the script to be invoked and provides the output as seen in Figure A2.4 below.

Figure A2.4 Running a script

A common use of script is to provide an alternative way of launching our application.
Normally, we would launch our program by node app.js, so we will provide this command
as the body of a new script called start.

Add the new script entry as seen in the following code fragment.

File: A2/package.json

{
 ...
 "scripts": {
 "start" : "node app.js",
 "test": "echo \"Error: no test specified\" && exit 1"
 },
...
}

A2: npm - The Node Package Manager 9

At present, our application doesn’t contain an app.js file, so let’s create one that contains
only a very simple console.log().

File: A2/app.js

console.log(“Welcome to npm!”);

Now, we can compare the alternative ways of launching our application. First, by
requesting node to launch the app.js file

U:\A2> node app.js

Figure A2.5 Starting an application with a node command

and then by launching our new start script

U:\A2> npm start

Figure A2.6 Starting an application with an npm script

A2: npm - The Node Package Manager 10

We can see that although the ultimate effect is the same (i.e. the application loads and
runs), the npm start option provides additional information. This is normally the preferred
option for Node developers as it enables us to chain additional commands into the script to
retrieve and record other information. For example, we might have an application that
behaves differently depending on the availability of an unreliable Internet connection and
the script could check the connection status and launch the appropriate Javascript file in
response.

